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Abstract-A variational formulation based on the method of “local potential” is presented for the non- 
linear heat and mass transfer during drying of a moist body. A functional is obtained from which the 
balance equations of the process follow as Euler-Lagrange equations in the extended sense of Rrigogine and 
Glansdorff. The method has been applied to the problem of heat and mass transfer in an infmite plate 
with temperature and moisture dependent thermal and mass diffusivities under boundary conditions of the 

first kind. 

NOMENCLATURE 

$3 

r, 
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r, 

Q9’ 

a In9 

6 

A 

6 l? 

C aI9 

c9, 

Cartesian length coordinates, 
i = 1,2,3[m]; 
temperature [“C] ; 
moisture transfer potential 

[“Ml; 
time [h]; 
thermal diffusivity coefficient 

Cm”Pl; 
diffusion coefficient of moisture 
in capillary-porous body 
Cm’Pl; 
coefficient of internal moisture 
evaporation; 
specific heat of evaporation 

CkWb.d ; 
thermal gradient coefficient 

[l/q; 
specific isothermal mass capa- 
city of moist body [kg/kg ‘M] ; 
speciiic heat capacity of moist 
body [kcal/kg “C] ; 

t A major part of the work on this problem was completed 
when the author was at Heat and Mass Transfer Institute, 
Minsk, USSR, on an invitation of the USSR Academy of 
Sciences which he thankfully acknowledges. 

Y, 

L, 

Lu, 
Ko, 

Ko*, 

Pn, 

Fo, 
T 

8, 

xi, 

T*(Xi 9 J’o), 

019 

thermal conductivity [kcal/mh 

“Cl ; 
moistureconductivity(= a,,$,,~) 
[kg/mh”M]; 
macroscopic mass-transfer po- 
tential distribution; 
density of the porous medium 

[kg/m’]; 
half thickness of the infmite 
plate; 
the Luikov number (= a&,); 
the Kossovich number 
( = Pc,wc,0; 
modified Kossovich number 
(= EKo); 
the Posnov number 
(= S,At/c,,,A@; 
Fourier number; 
dimensionless temperature : 

0 - Wcl~ 
dimensionless mass transfer po- 
tential (1 - O/O,); 
dimensionless Cartesian coor- 
dinate (= x,/L); 
macroscopic temperature distri- 
bution; 
constant specifying the depen- 
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dence of an on x equation 
(3.1); 

bZt constant specifying the depen- 
dence of a, on 3: equation 

(3.2); 
Subscript 0 refers to initial values. 

INTRODUCTION 

THB VARIATIONAL fo~ulation of non-linear 
problems in transport processes is compara- 
tively of recent origin. Such a formula~on 
provides the engineers with direct methods of 
calculus of variations for obtaining approxi- 
mate analytic solutions to the problems which 
are otherwise tractable only by elaborate numeri- 
cal techniques. The variational formulations 
of such problems start with the construction 
of a functional called “the Lagrangion” from 
which the balance equations follow as the Euler- 
Lagrange equations for the extremum of the 
Lagrangian. The f&t step in the direction of 
obtaining the Lagrangian was taken with the 
enunciation of the theorem of ~inimnm Entropy 
Production El]. This theorem however could 
be held valid only under the following restric- 
tive assumptions of 

(a) linear phenomenolgi~l laws, 
(b)symmetry of the matrix of phenomeno- 

logical coefficients, 
(c) absence of mechanical dissipation of 

energy. 
Under the above restrictions, entropy pro- 

duction could be used as the evolution criterion 
for only linear processes for which exact methods 
of solution already existed. Prigogine and Glans- 
dorff 12, 3f have given a generalized evolution 
criterion valid for any system without restric- 
tions of the type stated above from which the 
balance equations of energy, momentum and 
mass follow as the Euler-Lagrange equations. 
This extended variational formula~on is based 
on “local potential” which has a specialized 
construction. Local potential is a function of 
the dependent variables in the usual form 
which are subject to variation. It is also a 
function of dependent variables at a stationary 
state which are not subject to variation. The 
balance equations are recovered from the func- 
tional by obtaining the variation with respect 
to each of the variables, equating it to zero and 
then revoking the additional condition that 
values of the variables in the varied state are 

I 
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FIG. 1. Effect of variability of c+,,, a4 on 8 (0, Fo) for Luc = 1 
KiF+Pn= 0.2 Ko*= 050, = 0;@2(i, = 0:01;0-4; 1. 
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T 

ho Fo 

FIG. 2. Effect of variability of a, a, on T(0, Fo) for Lu,-, = O-1,4 
Ko*Pn = 0.213, = 0.2;O (r2 = 0:0*1;0.4: 1. 

equal to their value in the stationary state. The 
local potential formulation has recently been 
extended [4, 51 to transient processes and 
applied by Hays [6] and Curd [7, 81 to the 
solution of various non-linear problems in 
heat-conduction as also of mass diffusion. 

The purpose of this paper is to apply the 
extended variational formulation to the problem 
of combined heat and mass transfer in a porous 
medium with very general dependence of the 
thermophysical characteristics on the tem- 
perature and mass transfer potential. Integral 
methods for the non-linear heat and mass 
transfer based on the boundary-layer approach 
developed earlier [9] and [lo] are restricted 
by the fact that firstly such an approach can 
be successfully used only in one-dimensional 
process and secondly only a very restricted 
class of dependences of thermophysical proper- 
ties on the heat and mass transfer potentials 
could be taken into account. T’he present method 
is not faced with any of such restrictions. 

First, “a local potential” for non-linear heat 
and mass transfer has been set up. For illustra- 
tion the method is applied to the heat and mass 
transfer in an infinite plate of finite thickness. 
The effect of non-linearity due to variable 
thermophysical characteristics has been brought 
out by a comparative study in Figs. 1 and 2 of 
8 and T in the non-linear problem studied 
here and the corresponding linear problem 
studied by Luikov and Mikhailov [ll]. The 
effect of variability of the 4. and Us for Lu,, c 1 
are found to be opposite to the corresponding 
effects for Lu, > 1. 

2. FORMATION OF THE EXTENDED 
VARIATIONAL PRINCIPLE BASED ON LOCAL 

POTENTIAL 
The equations of heat and mass transfer in a 

porous medium with thermophysical charac- 
teristics dependent on temperature and moisture 
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transfer potentials are stated as 

i = 1,2,3. 

If the dependence of anr, an, E, 6, on temperature 
and moisture transfer potentials is defined by 
the following general relations: 

aq = qJw7 @I E = &,F&, e) 
(2.3) 

U, = ~~~r;~(t, e) 6, = iqqt, e). 

On introducing the non-dimensional para- 
meters defined in the nomenclature list we 
can write 

a aT 
- L@n,a~ F3FdaxL c 1 (2.5) 

where it has been assumed that C,, C, and y 
are constant. 

Now consider an isotopic capillary porous 
solid with volume V and surface S. The di- 
mensionless temperature Tand moisture-poten- 
tial 8 can be considered to be composed of the 
macroscopic ~st~bution T*(X$, Fo) and Q*(Xi, 
Fo) and the arbitrary variation of 2iT and 60 
around the corresponding macroscopic distri- 
bution T* and Q*. Thus we may write 

T(Xi, F,) = T*(Xi, F,) + 6T(X,, Fo) 1 (2.6) 
@(Xi, Fo) = O*(Xi, Fo) + 6O(Xiy FOG 

and also 

F,(7; 0) = F,[T* + 6T, O* + d@j 

= F&T*, W) + dF, n = 1,2,3,4. (2.7) 

multiplying both sides of (2.4) and (2.5) by 
- 6T and - 60, respectively, we get 

-$T=-&- Fig 6T 
0 i[ 1 ‘- ao f Ko*F2 aFo 6T (2.8) 

and 

f L%Pn, & F$, g (2.9) I I 1 
or using (2.6) 

and 

Integrating both sides of (2.10) and (2.11) over 
the volume I/ and also over Fo (non-dimensional 
time), using the divergence theorem 

--fS(6T)‘dv = SfL~6T+ IG*F, 

u Fo 

dv dFo 

- 
ss 

F z 6Tn ds dFo 
1 aXi 

S Fo (2.12) 
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s&-y- LuoPno(F,F,~g?)d”dFo 
- ss LuoF3 g n&3 ds dFo +~&L@=n,F,F, 

I 
s Fo s PO 

x aT*n68dsdF 
ax, 

0. (2.13) 

The surface integrals on the right-hand side of 
equation (2.12) and (2.13) vanish for either 
conditions; T and 0 being constant at the 
surface or the surface being insulated to heat and 
mass transfer. On substituting (2.7) on the 
right-hand side of equations (2.12) and (2.13) 
and neglecting the terms ST < T* and 
6 84 8 *, we get to the first approximation 

SJ,=-fEST)‘du=SS[~~T+Ko*F: 

” v Fo 

dv dFo (2.14) 

and 

(2.15) 

In view of the fact that the left-hand side of the 
above equations are negative and definite, we get 

6J = 6J1 + 6J, < 0. (2.16) 

Consequently, the required macroscopic tem- 
perature distributions T* and moisture transfer 
potential @* is character&xl by the extremum 
conditions 

($r = 0, (g)e, = 0 (2.17) 

with subsidiary conditions 

T = T* 

8 = w 

where 

(2.18) 

x~E dvdFo 1 ax, aXi * (2.19) 

It may be noted that in the above extended 
variational principle based on local potential 
the thermo-physical parameters a,,,, a*, E and 6, 
can be taken to be any arbitrary function of 8 
and t provided integrations with respect to I/ 
and Fo can be carried out for the assumed 
profiles for T, T*, 8 and @*. The stipulation of 
specific type of boundary conditions namely, 
the constancy of 8 and T or vanishing of 

a8 aT 

ax;ax, 

the normal derivatives at the boundary, is not a 
serious limitation. While in quite a number of 
problems these conditions are actually satisfied, 
in others pertaining to one-dimensional heat and 
mass transfer, the surface integrals can be easily 
evaluated for the boundary conditions of the 
second and third kind. 

3. APPLICATION TO NON-LINEAR HEAT AND 
MASS TRANSFER IN AN INFINITE PLATE 
UNDER BOUNDARY CONDITIONS OF THE 

FIRST RIND 

Consider the heat and mass transfer in a moist 
inilinite flat plate - 1 < x ,< 1 under the boun- 
dary condition that there is no mass-loss from 
the boundaries while the temperature at the 
boundaries is kept constant. We also 
assume the following dependence of thermo- 
physical properties 

a, = a,,,(1 + cl T) (3.1) 
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a, = a&f -i- cr#f [3-Z) ~~~~ p$j, we have to s.d%mse a pro&e 

the other ~~~~~~~~~~~~ properties being fur T and @ .satisfying the initial and bounds 

assumed constant. The process can be mathe- conditions and containing some und~te~i~ed 

matically stated by the following equations: coefficients which would be determined so as to 
minimize J, Here we choose a orofile which is 

dT 
1-1 2 
c?Fo dX 

(1 +o,T)g 
I 

and 

O<X<i Fo > 0 

with the initial conditions 

0(x, 0) = 0 T(x, 0) = 0 

and the boundary conditions 

d 0(x, Fo) dX = 0 Tft, 8’0) = - 1 

and the monition due to s~rne~~ 

xF(O, Fo) &?(Q, Fo) o 

ax =--xF---= . 

(3 ‘3) 
similar to the exact solution of the linear problem 
studied in [ll] (a, = 0, c2 = 0) and satisfies the 
initial and boundary conditions (3.5) and (36). 
We assume 

(3.4) 

0(X, Fo) = ,j& c”i(l - vi”) 
(3.5) n-1 i=1 

cos (v&,X) exp f - p,zFo) (3.10) 

(3.6) 
where 

E RI = 2v,(l - v”,) sin (Y&Ji 

The first of conditions (3.6) means that the total -1 

moisture content of the plate remains constant. c,~ = 2vz(l - v:) sin (v,&/ 
The functional J(T, T*, 8, @*) whose varia- 

tion with respect to T and Q equated to zero 
along with the subsidiary condition (2.18) is 

fin sin v,pcl, sin vzfl, - 2 cos vlpcl, 
0 

equivalent to the equations (3.3) and (3.4) is 
given as a particular case of equation (2A9). Thus, 

Gas ~~$43 
I 

(3.12) 

The surface integrals vanish because of the and v1 and v2 are given by 
boundary conditions (3.6) and (3.7). To find the 
solution of the problem, we use the self-con- 
sister& method set forth by Prigogine and 

$ = f 
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[ 
(1 + Ko*Pn~ + T$- 

> 11 ’ - $ . (3.13) 
0 O_ i=1,2 

Also 

T*(X, PO) = - [l + f i c,: 
n=l i=l 

cos (v2&X) exp ( - J~.,*~Po)] (3.14) 
m 2 

W(X, Fof = & 
cc 

c,:(l - vi”) 

n=i I=1 
cos (v&X) exp ( - ~~‘~0~ (3.15) 

with corr~~nding values of C,*, and Clt;. 
The unknown coe&ients K in the profiles 

(3.9) and (3.10) are to be determined from the 
conditions 

aJjapl, = 0 (3.16) 

If = r* rn~h~ (3.17) 

The caption of the profifes (3.9) and (3.10) 
offer some distinct advantages. Firstly, it can be 
easily verified that at e1 = 0 and e2 = 0 the 
solutions obtained from the variational method 
is the same as the exact solution for the linear 
case and secondly, we can now obtain T and 
c2 = 0 only by determination of one set of 
coefficients pB. Substituting T, T*, 8 and @* 
from the equations (3.9), (3.10), (3.13) and (3.14) 
on the ~~t-h~d side of equation (3.16), finding 
M/Z& taking j.$ to be constant, equating 
~~~~~ to zero and then imposing the self- 
consistency condition (3.17), we get after alge- 
braic simplification the following infinite system 
of non-linear algebraic equations 

where 

B,, = vl(l - vi) sin v2p, (3.19) 

B nZ = vz(l - v:, sin V& (3.20) 

B,, = v,(f - v$)sinv,tt, (3.21) 

s,, = v2fl - VS) sin VI/&. (3.22) 
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Cai are given by equations (3.11) and (3.12) and 

and if 

alk = wk. 

Then 

Ej = i sin (vip,X) sin (v,pmX) dX 
0 

1 sin 2ai, i=J 

2 4 m=n 

~~ = j COS (Vi~,X) COS (vJ~X) dX 
0 

Ujn sin ai, COS aJm - a,, i#J 
= 

2 2 
Qh - fh 

COS lYin sin cr,, 
flz # n 

1 + sin 2ain i=J 
=- 

2 4ain m=n 
1 

/I$ = j X sin fvipc.X) cos (vJpmX) dX 

ain COS Ciin COS aJnt + a,, sin ain sin aJm 
= 

a?,1 - ai?, 

(a2 + a:,) sin ain CO.3 Uj, - 2ainaJnr COS (rin sin aJm i #.I 
+ 

e-(aL - a:,)’ mfn 

sin 2a. cos 2a. =-.-_--z-In i=J 

8ai 4% m=tl 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

fi; = i X cos (v,fi,X) sin (v$p,X) dX 

ain sin ain sin aJnr + aJrrl COS ain COS aJm 
= 2 

% 
2 

- aJm 

+ (at f a:,) cos ain sin aJnt - 2ainaJm cos aJm sin cli? i#J 

(ai51 - a:d2 m#n 
(3.28) 

I 

=-[ 

sin 2ai, COS 2cti, _ 
2 4az m 2aie I 

i=J --. 
i?Z=n 
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= sin a, - sin 3ain i=J=l 
-- 

4a, Da, m=n=k 

/$g = i X cos (v,jf*X) sin (vJpmX) cos (f+pJ) dX 

i=J#l 

m=n#k 
(3.29) 

i= J=l 

m=n=k 
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1 =- 
2 [ 

cca sin 2dlirt sin atk + 2a, cos 2ct, cos GL~& 

4a; - %& 1 
1 

‘2 [ 

(4~; f c&) cos 2~ sin glk - 4cr,a, cos dtlk sin 20~ I i=.,f#i _I~ _.___-.?! 
(4& - c&)2 m=n#k 

Equation (3.18) is a set of non-linear algebraic 
equations in terms of coeffticients pm--when 
truncated at s term, these are of the form 

i = I, 2,3 _ _ . s. (3.31) 

The solutions of these equations were obtained 
by Newton-Raphson’s method [12]. The method 
was earlier applied by Hays [6,8] in the solution 
of a similar equation in case of heat conduction. 

(3.30) 

The calculations of roots of equation (3.18) were 
carried out on a computer for various values of 
or and cr2 using as the starting values of CL, the 
corresponding known values found in the solu- 
tion of the corresponding linear problem [1 l] 

(c1 = 4 62 = 0) and ~pro~g the vahres till 
the reminder is of order 10e4. In this manner 
the first four roots of equation (3.18) were 
determined. These roots are tabulated in the 
following tables for various values of Ko*, Pn 
and ei and es. 

Table .!(a). Firstfbwr routs ofequation (3.18) vt = 0.2 cr2 = I 
_ ~.___ __..--.---.__. __. ________“_~__ ___ ~~_ .- _ “.ll”““.“.“l--” __.._.. ~.~___I_ . ““.-.._____,._-._~ __~_~~~ __..- 

fwPno = 0.2 Ko*Fn, = 0.4 
._.._. _ _ll.l _-._. --1__-- 

Lu, Pzsl &%2 Y3 Pa PI P’z P3 cr.4 
.-__l-“--- 

0.1 1.453 2.035 2,683 3.874 1.314 l-895 2-48 f 3736 
o-4 1.525 2643 4‘229 5.553 f.4f3 2-541 4.073 5,476 
1Tl 1548 4126 4.895 6539 I.441 4-053 4.783 6478 
4.0 I.546 4”613 6.363 3.764 1.540 6712 6.695 7.708 

__~_ ~_~~ --.-.. .-.. l__l ___“__ ^ _“_.__ _~ ._.~___ I l...“l._” __“.. _ ---- -~~~~-- -- ---. 

Table l(b). Roots ofequation (3.18) u1 = 02 02 = 0.4 
..-~-.--. ---” ““~.” _______------ ^ .._.. ““-..I___ _-_. --__- “” . ..__ _._ _..~ ---~-~- ~------. 

Ko*PnO = 0.2 Ko*Pn, = 0.4 
____~1-- -I_ .~I __ ...___--.,“- 

LWl i(l i&z !-G &4 Pi fix F3 k 

@I f-385 1902 2-494 3-672 f‘353 I-792 2,285 3-353 
o-4 f-520 2.193 3810 5.287 1.495 2.112 3681 4-983 
1a l-54$ 3.145 4.658 6.29% I.526 3096 4.570 6.146 
4-o l-546 4,297 6.571 7-612 1.538 4.259 6~242 7a.B 

_____ __ __... ~~~__ __._ ._ _ ____. ____ ..__ -I~---~~==_=~-‘: I-_ 

Table l(c). Roots ofequation (3.18) o, = 0.2 u2 = 0.1 
--_=_~:~:~~~___. - __- .-I^_- .______-.-- ---- ~- ___ _“_ .._ _._~_. -._ .-.-.-. 1”1.Z 

Ko*Pn, = 0.2 Ko*Pn, = 0.4 
-_--- .- .___~__ 

LUCI PI IL2 k lb Pi 1(2 P3 P4 
.---, .-._..- - 

0.1 0.8013 1.325 1m4 2.456 Q7917 1.318 1.579 2.452 
0.4 l-402 1.94f 3.574 4649 I.397 1.936 3.570 4.646 
1.0 1.506 3QO8 4.478 5.931 1%0 3*001 4.475 5.928 
4.0 1.530 4143 6,493 7.383 1.528 4.140 6493 7.383 

-_.--- -1__1- __-... ,.-. - .I____ 
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Table 2. Values of v, and vz 

Lu-3 

0.1 
0.4 
1.0 
4.0 

Ko’Pn, = 0.2 Ko*Pn, = 0.4 

VI V2 VI V2 

0.9891 3.1971 0.9786 3.2314 
0.943 1 1.6764 @8993 1.7582 
0.8011 1.2483 0.7326 1.3650 
0.4472 1.1180 0.4108 1.2171 

-~ 

RESULTS AND DISCUSSIONS 

The effect of dependence of the moisture 
ditIusivity a, and thermal diffusivity a4 respec- 
tively on the mass transfer potential and the 
temperature is depicted in Figs. 1 and 2. In these 
figures the dotted curves represent the solutions 
of the linear problem for values of Lu,, and 
Ko*Pn,, etc. as stated in these figures and have 
been plotted by numerical results from reference 
[ll]. In Fig. 1 8 (0, Fo), the non-dimensional 
mass-transfer potential at the symmetry surface 
is plotted as a function of nondimensional time 
for four combinations of the variability charac- 
teristics namely (a1 = 0, cr2 = 0), (bl = 0.2, 
g2 = 0.1; 0.4; 1) and I+, = 1. It is clear from the 
figure that in general e2 > c1 makes the mass 
transfer faster. This is quite an expected result 
as in this case the effective Luikov number 
[Lu,,(l + o,@)/(l + a,T)] > 1. In this case the 
drying time is effectively reduced. In Fig. 2 
- T(0, Fo) is plotted against non-dimensional 
time for the above four combinations of c1 and 
~7~ and for Lu, = 0.1 and La, = 4.0. It is seen 
that T is quite sensitive to the dependence of 
a4 on T for smaller values of Lu but it is not so for 
higher values. Further for La, < 1 and 
b2 < 01, the effect of non-linearity is more 
pronounced on T for large Fo while a similar 
effect is visible on T for small Fo at La,, > 1 
and rr2 > crl. This can probably be explained by 
the fact that for La, < 1 mass transfer is slower 
than heat transfer and u2 < bi only adds to this 
tendency with increasing time resulting in 
considerable slowing down the rate of change of 

8 thus blocking the rate of increase of T due to 
coupling in the energy balance equation. For 
La, < 1 and t.r2 > cl this effect has no definite 
tendency. 

CONCLUSION 

A variational principle based on “local poten- 
tial” has been constructed for the simultaneous 
non-linear heat and mass transfer for a very 
general type of dependence of the thermody- 
namic characteristics of the medium on the 
temperature and mass transfer potential. The 
effect of variability of a, and us on the tempera- 
ture and moisture distributions in an infinite 
plate of finite thickness has been studied under 
boundary conditions of the first kind. It is seen 
that the method reduces to solution of a system 
of non-linear equations. The extension of the 
method to deal with more complex boundary 
conditions and also to the intensive drying 
problem (where apart from temperature and 
mass transfer, pressure distribution is also taken 
into account) would lead to some computational 
difficulties but these would be quite negligible in 
comparison to the elaborate and complex 
numerical procedures for solving a system of 
simultaneous non-linear partial differential 
equations. 
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UNE FORMULATION VARIATIONNELLE GI?NI?RALISI?E DU TRANSFERT MASSIQUE 
ET THERMIQIJE NON-LINGAIRE DANS UN MILIEU POREUX 

R&nm&-Une formulation variationnelle basee stir la methode de *‘potentiel local” est present&e pour 
Ie transfert thermique et massique non lineaim durant fe skchage d’un corps humide. On obtiem une 
fouctionndfe B partir de Iaquelle Ies equations du bifan d&crivam fe processus ressemblent 8 cetles d’EnIer- 
Lagrange dans te sens &endu de Prigogine et Gfansdorff. La m&bode a Et& appliquie au problkme du 
transfert de chaleur et de masse pour une plaque infiie avec des diffnsivitb thermiques et massiques 

sous des conditions Iimites de premiErc esp&e. 

EIN ERWEITERTES VARIATIONSPRINZIP FUR INSTATIGNAREN 
WARME- UND STOFFTRANSPORT IM PORiiSEN MEDIUM 

Zusammenfassung-Ein Variationsprinzip. abgeleitet aus der Methode der “‘lokalen Potentiale”. wird am 
Beispiel des instationlren W&me- und Stofftransports w&rend des Austrocknungsvorgangs in einem 
feuchten Korper crhiutert. Eine Funktion wird abgeleitct, aus der die Gleichgewichtsbeziehungen des 
Vorgangs als Euler-Lagrange Gleichungen in der vun Prigogine and Glansdorff erweiterten Form folgen. 
Das Verfahren wird auf das Problem der W&me- und Sloff~bertragui~g in einer unendlich ausgedehnten 

Platte, mit Randbedingu~ge~ 1. Art ft%r dieTemperatur und die Konzeutration, angewsodt. 


