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NOMENCLATURE

Cartesian length coordinates,
i=123[m];

temperature [°C];

moisture transfer potential
['M];

time [h];

thermal diffusivity coefficient
[m?/h];

diffusion coefficient of moisture
in  capillary-porous  body
[m?/h];

coefficient of internal moisture
evaporation;

specific heat of evaporation
[keal/kg];

thermal gradient coefficient
[1/°C];

specific isothermal mass capa-
city of moist body [kg/kg °M];
specific heat capacity of moist
body [kcal/kg °C];

t A major part of the work on this problem was completed
when the author was at Heat and Mass Transfer Institute,
Minsk, USSR, on an invitation of the USSR Academy of
Sciences which he thankfully acknowledges.
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NON-LINEAR HEAT AND MASS TRANSFER IN A
POROUS MEDIUM+

Abstract—A variational formulation based on the method of “local potential” is presented for the non-
linear heat and mass transfer during drying of a moist body. A functional is obtained from which the
balance equations of the process follow as Euler-Lagrange equations in the extended sense of Prigogine and
Glansdorff. The method has been applied to the problem of heat and mass transfer in an infinite plate
with temperature and moisture dependent thermal and mass diffusivities under boundary conditions of the

thermal conductivity [kcal/mh
[} C] ;

moisture conductivity (= a,,C,,y)
[keg/mh°M];

macroscopic mass-transfer po-
tential distribution;

density of the porous medium
[kg/m®];

half thickness of the infinite
plate;

the Luikov number (= a,,/a,);
the Kossovich number
(=pCaBb/c )

modified Kossovich number
(=¢eKo);

the Posnov number

(= d,At/c,AD);

Fourier number;

dimensionless temperature:

(t — to)/to;

dimensionless mass transfer po-
tential (1 — 6/6,);
dimensionless Cartesian coor-
dinate (= x;/L);

macroscopic temperature distri-
bution;

constant specifying the depen-
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dence of a, on T, equation
{3.1);

constant specifying the depen-
dence of a, on T, equation
(3.2);

Subscript 0 refers to initial values.

Gy,

INTRODUCTION

THE vARIATIONAL formulation of non-linear
problems in transport processes is compara-
tively of recent origin. Such a formulation
provides the engineers with direct methods of
calculus of variations for obtaining approxi-
mate analytic solutions to the problems which
are otherwise tractable only by elaborate numeri-
cal techniques. The variational formulations
of such problems start with the construction
of a functional called “the Lagrangion” from
which the balance equations follow as the Euler—
Lagrange equations for the extremum of the
Lagrangian. The first step in the direction of
obtaining the Lagrangian was taken with the
enunciation of the theorem of Minimum Entropy
Production [1]. This theorem however could
be held valid only under the following restric-
tive assumptions of
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(a) linear phenomenolgical laws,

{b}symmetry of the matrix of phenomeno-

logical coefficients,

{c) absence of mechanical dissipation of

energy.

Under the above restrictions, entropy pro-
duction could be used as the evolution criterion
for only linear processes for which exact methods
of solution already existed. Prigogine and Glans-
dorff [2, 3] have given a generalized evolution
criterion valid for any system without restric-
tions of the type stated above from which the
balance equations of energy, momentum and
mass follow as the Euler~Lagrange equations.
This extended variational formulation is based
on “local potential” which has a specialized
construction. Local potential is a function of
the dependent variables in the usual form
which are subject to variation. It is also a
function of dependent variables at a stationary
state which are not subject to variation. The
balance equations are recovered from the func-
tional by obtaining the variation with respect
to each of the variables, equating it to zero and
then revoking the additional condition that
values of the variables in the varied state are
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Fi. 1. Effect of variability of a,, a,0n 8 (0, Fo)for Lu, = 1
Ko*Pn= 02 Ko*= 050, = 0,020, = 0;0-1;04; L.



HEAT AND MASS TRANSFER IN A POROUS MEDIUM

1761

logio Fo

-04

Fi16. 2. Effect of variability of a,,, a, on T(0, Fo) for Lu, = 0-1,4
Ko*Pn=020,=02;00, =0;01;04: 1.

equal to their value in the stationary state. The
local potential formulation has recently been
extended [4, 5] to transient processes and
applied by Hays [6] and Curd [7, 8] to the
solution of various non-lincar problems in
heat-conduction as also of mass diffusion.

The purpose of this paper is to apply the
extended variational formulation to the problem
of combined heat and mass transfer in a porous
medium with very general dependence of the
thermophysical characteristics on the tem-
perature and mass transfer potential. Integral
methods for the non-linear heat and mass
transfer based on the boundary-layer approach
developed earlier [9] and [10] are restricted
by the fact that firstly such an approach can
be. successfully used only in one-dimensional
process and secondly only a very restricted
class of dependences of thermophysical proper-
ties on the heat and mass transfer potentials
could be taken into account. The present method
is not faced with any of such restrictions.

First, “a local potential” for non-linear heat
and mass transfer has been set up. For illustra-
tion the method is applied to the heat and mass
transfer in an infinite plate of finite thickness.
The effect of non-linearity due to variable
thermophysical characteristics has been brought
out by a comparative study in Figs. 1 and 2 of
© and T in the non-linear problem studied
here and the corresponding linear problem
studied by Luikov and Mikhailov [11]. The
effect of variability of the a,, and a, for Lu, < 1
are found to be opposite to the corresponding
effects for Lu, > 1.

2. FORMATION OF THE EXTENDED
VARIATIONAL PRINCIPLE BASED ON LOCAL
POTENTIAL

The equations of heat and mass transfer in a
porous medium with thermophysical charac-
teristics dependent on temperature and moisture
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transfer potentials are stated as

a8, ot C, 00
,,,yBB—- (?( 6 <
i a\m ax‘.) ox; ‘U'"a (22)

= 1,2,3.

If the dependence of a,,, a,, ¢, §, on temperature
and moisture transfer potentials is defined by
the following general relations:

a, = a, F(t,0) &=gF,(0)
am = amDF3(t7 9) 51 = 50F4(t5 9)’

On introducing the non-dimensional para-
meters defined in the nomenclature list we
can write

(2.3)

T @ oT
e | = *
oF, an[Fl(I@)(aXJ Ko*Fy(T, ©)
)
X 5F (24)
00

0 00
&5{; = Luoa—X“i [Fs('ﬁ Q)a-—Xi:l
oT

0
- Luopnogx_,‘ [F3F4é")}”—! (2.5)

where it has been assumed that C,,C, and y
are constant.

Now consider an isotopic capiliary porous
solid with volume V and surface S. The di-
mensionless temperature Tand moisture-poten-
tial ® can be considered to be composed of the
macroscopic distribution T*(X,, Fo)and %X,
Fo) and the arbitrary variation of 67 and 6@
around the corresponding macroscopic distri-
bution T* and @*. Thus we may write

T(X;, Fo) = TXX,, Fo) + 6T(X,, Fo)] 2.6)
@(X,, Fo) = @%(X,, Fo) + 60(X,, Fo)
and also

F(T,0) = F,[T* + 8T, 0* + 0]

=F(T* @% + 6F, n=1234 (27
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Multiplying both sides of (2.4) and (2.5) by
—&6T and — 460, respectively, we get

oT é oT
- E(STM 3X, [Fl 7% }5”{
00
L, — 2,
+ Ko anFoéT (2.8)
and
00 K2 69
0 oT
+ LuoPny 3 X,[ 3F, 3 X_‘ 2.9)
or using (2.6)
1 3 , OT* oT oT
" 20F, 6Ty = 6F05T oX, [ tox ‘ST]
00
*Foy— 2.1
+ Ko*F, oF, oT (2.10)
and
[ ,  08* il
~33F, 08 =3F, %0 ~Lugy

)
x [n— 5@] + LugPn ——

oT
. [Fahgzéa] 2.11)

Integrating both sides of (2.10) and (2.11) over
the volume ¥ and also over Fo (non-dimensional
time), using the divergence theorem

«——f(éi")z dv = fj[@5T+ Ko*F,

6 T
8 — 6T + = F&(ax)]dvdFo

oT
- o dF
ij, axiéTnds 0
(2.12)

s Fo

oe*
- _J‘((j@f dv = jj 86 + = Lu0F3



HEAT AND MASS TRANSFER IN A POROUS MEDIUM

dT*9(56)
F 40X, X, )d dFo

00
8( e ) LuoPn, (

- J‘J. Lu0F3 gg‘n&@ dS dFO +ijuOPnoF3F4

s Fo s Fo

a *
x ——ndé@ ds dF,.

5 (2.13)

The surface integrals on the right-hand side of
equation (2.12) and (2.13) vanish for either
conditions; T and @ being constant at the
surface or the surface being insulated to heat and
mass transfer. On substituting (2.7) on the
right-hand side of equations (2.12) and (2.13)
and neglecting the terms 67 < 7* and
3 @< @ *, we get to the first approximation

= 1 2 a * * %
8=~ |(6T) do = 50T + Ko*F¥

v Fo

e 1 oT
- F 2.14
x6F0+2F 6(6X) dvdFo (2.14)
and
1 24 00*
oJ; = —5J(59) dv—IJ 6F06@
v v Fo
1 00
+2Lqu3"‘5(aX> LuoPno[FgF:
T e
A
X aXi5(6X>—|dvdFo (2.195)

In view of the fact that the left-hand side of the
above equations are negative and definite, we get

oJ =68J; +6J, <0. (2.16)

Consequently, the required macroscopic tem-
perature distributions T* and moisture transfer
potential &* is characterised by the extremum

conditions
oJ
= 0’ —_— = .
(58)6‘ 0 (2.17)

(7).
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with subsidiary conditions
T=T*
e = 0% (2.18)

where

aT* 00+ oT
J= T+ KorFt 2274 L
U [aFo TR R T2 (ax)z

0e* 1 20
ox, T3 Lwofs (axi

2
+ O — ) — LugPnoF4F%

aT* 00
ﬁﬁ]d dFo.

It may be noted that in the above extended
variational principle based on local potential
the thermo-physical parameters a,, a,, ¢ and 6,
can be taken to be any arbitrary function of #
and t provided integrations with respect to V
and Fo can be carried out for the assumed
profiles for T, T*, @ and @*. The stipulation of
specific type of boundary conditions namely,
the constancy of @ and T or vanishing of

90 o1
X, oxX;

the normal derivatives at the boundary, is not a
serious limitation. While in quite a number of
problems these conditions are actually satisfied,
in others pertaining to one-dimensional heat and
mass transfer, the surface integrals can be easily
evaluated for the boundary conditions of the
second and third kind.

(2.19)

3. APPLICATION TO NON-LINEAR HEAT AND
MASS TRANSFER IN AN INFINITE PLATE
UNDER BOUNDARY CONDITIONS OF THE

FIRST KIND

Consider the heat and mass transfer in a moist
inifinite flat plate —1 < x < 1 under the boun-
dary condition that there is no mass-loss from
the boundaries while the temperature at the
boundaries is kept constant. We also
assume the following dependence of thermo-
physical properties

a,(1 + 0,T) 3.1)
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3.2)

the other thermophysical properties being
assumed constant. The process can be mathe-
matically stated by the following equations:

Gy = %{i + 6233

orT o[ oT e
e e 2] e RO® e
3o = ox |1 T i) ax] Ko*ore G2
and
40 8 o
5;:5 = @X Lﬂe{i - 6‘28} ‘{
Lﬁ@?}?{}é !:{1 -+ 528) }
0<X<1 Fo>0 (34
with the initial conditions
O(x,0) = T(x,0) = 0 (3.5)
and the boundary conditions
1
{O(x,Fo)dX =0 T, Fo) = ~1 {3.6)
0
and the condition due to symmetry
8T(0, Fo) _ 06(0, Fo) _
X X 0. 37

The first of conditions (3.6) means that the total
moisture content of the plate remains constant.

The functional J(T, T*, 8, @*) whose varia-
tion with respect to T and © equated to zero
along with the subsidiary condition (2.18) is
equivalent to the equations {3.3) and (3.4) is
given as a particular case of equation {2.19). Thus,

1. J. KUMAR

Glansdorff [3,5]. We have to choose a profile
for T and @ satisfying the initial and boundary
conditions and containing some undetermined
coefficients which would be determined so as to
minimize J. Here we choose a profile which is
similar to the exact solution of the linear problem
studied in [11] (¢, = 0, ¢, = 0) and satisfies the
initial and boundary conditions (3.5) and (3.6).
We assume

T(X, Fo) = —«[1 + Z z Ci €08 (v; 11, X)

n=1i=1

exp{—~u’ Fo}_; (3.9

o 2
O(X, Fo) = I;,—:); Z Z el = v2)

n=1 i=1

cos (v, X) exp { — u2Fo) (3.10)
where
oy = 2vy(1 — vi)sin (v,u,)/
(s&,; Sin vy 4, Si0 Vopt, — {i;% Vifhy
cOos vziu,,_l {3.11)

Cnz = 2v5(1 — v}) sin (v p,)/

[u,, sin v, u, sin vyu, — Fn cos Vil
. Luy

cos vgz,,} (3.12)

oT* e

(1 46, TH (0T _o0*
Lo TR YRR T ax) T ®aFe
J(T, T* @, 8%) = J J( L o sre 0| X 4X4F0 G
i1
0 Fo 0(1 B @*)( ) — LuoPno(l -+ 0"2@*) (?X a—X,—

The surface integrals vanish because of the
boundary conditions (3.6} and (3.7). To find the
solution of the problem, we use the self-con-
sistent method set forth by Prigogine and

and v, and v, are given by

. v
v = E[(l + Ko*Pn, + zi—) +{— 1}‘/

¥
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1)? 4
Ko* e ] {31
[(1 + KotPro + L“O) L“o:ll=1,2 G.3)
Also

T*X,Fo)= —[1 + Z }:c

a=1 i=

cos (vou¥X)exp (—pur’Fo)]  (3.14)
o 2
O*X,Fo) = ot cx(t = v))
a=1 §=1
cos (vy*X) exp (—u**Fo)  (3.15)

with corresponding values of C¥, and C},.

The unknown coefficients u, in the profiles
(3.9) and (3.10) are to be determined from the
conditions

0J/ou, =0 (3.16)
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with the conditions of self-consistency
(3.17

iven iy

Ho = Hy-
The assumption of the profiles (3.9) and (3.10)
offer some distinct advantages. Firstly, it can be
easily verified that at ¢, =0 and o, = 0 the
solutions obtained from the variational method
is the same as the exact solution for the linear
case and secondly, we can now obtain T and
g, =0 only by determination of one set of
coefficients yu,. Substituting T, T* © and @*
from the equations (3.9), (3.10), (3.13) and (3.14)
on the right-hand side of equation (3.16), finding
oJ/8u,, taking u¥ to be constant, equating
8J/ou, to zero and then imposing the self-
consistency condition (3.17), we get after alge-
braic simplification the following infinite system
of non-linear algebraic equations

_B }VV; 1—-
e R

m=1i=} J=1

— OB 4+ BB+
e [ G2~ Cults + Bty + 23|
® o 2 2 2 B_.vv,
+ “RiTmi it d
B+ ur + e

m=1k=1i=1tJ=1 =1

Lug(1 — v})
Kot ( Ko* "'P”‘))-t

BB — ba)
CoiBSp, + =22+ Bap, v}
[ nit'ijFn ) ___#3 J—

_ Luogy(l = ¥ = H (1 — )

! Ko*?
LugPnyoy(l — v (1 — v})
- K %2
i A
[CrastnB5s + BviB5SPST + BuBiSi + BB 5ilud + w+phl=0 (318
where
Bnl = Vl(]. - V%) sin Vall, (3.19)
an = Vz(l - Vf) Sin le,, (3.20)
B"li = VI(I - V%) Sin }’2;{,” (3-21}
Bmz = Vz(l — V§) Sin vlﬁ,,,. (3.22)
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C,; are given by equations (3.11) and (3.12) and

. _9Cy
"o o,

and if
O = Vil

Then

1
5 = [ sin (v, X) sin (v;p,X) dX
o

O gy SIDL O, COS L, — Oy, COS &, SIN 0O,

- 2 2
Lip — Apy
I sin 2« i=J

1
B = [ cos (v, X) cos (v, X) dX
0

o, SiN &y, COS &y, — O, ;
= 5 5 COS o, sin a,,
X — Xim f
1 sin2a, i=
. 2 4a,, m=n
B = { X sin (v, X) cos (v, X) dX
7]
@, COS Oy, COS U gy, + Oty SIN Oy, SIN 0L gy
- aim - aizn
(@ + a,)sin a;, COS 0, — 206,05, COS 0, SIN 0,
(o — o)’

sin 2a;,  cos 2w, i=J

8aZ 4a,, m=n

in

1
B = [ X cos (v, X) sin (vyu,, X) dX
4

0, SIN Oy SIN Qg + Oy, COS O, COS O,y

= ) 3
Oiw — Eym

(e, + a2,) cos a;, Sin oy, — 200,07, COS &y, SIN &y,

(of, — afm)’

_ Disin2a,  cos 2o, i=J
2| 40 20, m=n

(323)
(324)
(325)
i%J
n % n
(3.26)
y
m+#£n
(327)
i#J (3.28)
m#*=n
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1
555 = | sin (v, X) sin (v, X) cos (vysX) dX
[¢]

= COS g0ty SID 0y COS &, — gy COS Uy, SIN Ayl — 02,)

(0lin — ) SID Oy COS (0y — X ym) — Gy COS 0ty SIN (g — tym)

+ Oy (O:in - a.hn) [“?k - (“in - “Jm)z] i#J # !
2 + Oy, COS 0ty SIN (o + Oyp) — (X + App)SiD O COS (0, +25,) | 7 #Fn#k
(ain + a.lm) [alzk - (ain + a.lm)z:l
= sin o, — sin 3o, i=J=1
4&& 121"“ m=n:= k
_ sinay 1] 20y sin 2a,, cOS oy, — oy Sin oy cOs 2a;, i=J#1 (329)
T2y 2| 4o} — ol m=n#k )
1
B = [ X cos (v, X) sin (v,p,,X) cos (0,4, X) dX
[}
O SIME Oty STN 0Ly, + 07, COS O, COS U gy
2 2
Uiy = Oy
= COS 0y, ) 5 i .
4 (0 + &) COS &y, SiD 0Ly, — 200, SID &, COS Oy,
(o, — a,)’*
+ L
z(ain - a]m)z[alzk - (ain - a)m)z] —

-
(i — 0tgm) 2y €OS (0t ~ y) {COS oy —

sin apfof + @ + a.lm)zj}
[ed — (@ — %m]
2oy, €OS 01,
[oh — (@, — alm)z]}

— %y COS 0t sin (“in - a.lm) + {ain - a.hn) sin @y COs (uin - a:Jm)

+ (ain - d]m) sin (a,',, - ajm) {Siﬂ 171 +

Xy
2etin + gy lohe — (@5 + y0)?]

sinay [af + (@, + afm)]’}
alok — (g, + 2y,)°]

+ 20, cos o, }
[of — (@ + 2ym)*]

(®in + 0yy) 2 €OS (o, + “Jm){ms Ly, —

+ (miu + alm)z Siﬁ (al'ﬂ + “Jm) {Sm Ay

|+ (o, + ay,) sin oy, cos (o, + o) — Oty COS oty Sin (t;, + 07,)

_ sino,,  cosa, __cos3ay, . sin g, i=J=1
4o, 4, 120, 3642 m=n=k
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_ 1oy sin 2a,, Sin oy, + 24, o8 2o, COS oy
2 4ot — o
11 (4o, + o) cos 2ay, 5in ay — 4o,y €OS y 5in 20, i=J#1 (3.30
2 (4o, — i) m=n#k 30)

Equation (3.18) is a set of non-linear algebraic
equations in terms of coefficients p,—when
truncated at s term, these are of the form

Fi =(ﬂ1nu2"'*1us) =0

i=1,23...5 (331
The solutions of these equations were obtained
by Newton—Raphson’smethod [12]. The method
was earlier applied by Hays [6,8] in the solution

The calculations of roots of equation (3.18) were
carried out on a computer for various values of
o, and ¢, using as the starting values of g, the
corresponding known values found in the solu-
tion of the corresponding linear problem [11]
{o, =0, 0, =0) and improving the values till
the remainder is of order 107 *. In this manner
the first four roots of equation (3.18) were
determined. These roots are tabulated in the
following tables for various values of Ko*, Pn

of a similar equation in case of heat conduction. and o, and a,.

Table Ma). First four roots of equation (3.18)o; =020, =1

Ko*Pn, =02 Ko*Pny, = 04
Lu, Hay Haz i3 Hae iy i s Ha
31 1-453 2035 2683 3874 1-314 1-895 2-481 3736
o4 1-525 2-643 47229 5-553 1413 2-541 4073 3476
10 1-548 4126 4895 6539 1-441 4053 4783 6478
40 1-546 4673 6763 7764 1-540 6712 6695 7-708

Table 1(b). Roots of equation (3.18) ¢, = 02 g, = 04

Ko*Pny = 02 Ko*Pn, = 04
Luy Hy H#a Hs Ha Hy Ha H3 Ha
ol 1-385 1902 2-494 3672 1-353 1792 2285 3353
o4 1520 2193 3810 5-287 1-495 2-112 3-681 4983
0 1541 3143 4-658 6291 1-526 3096 457G 6146
40 1-546 4-297 6571 7612 1-538 4259 6242 7-503

Table 1(c). Roots of equation (3.18) vy = 02 g, = 01

Ko*Png = 02 Ko*Pny = 0:4
Luy By Ha H3 Ha H Ha Ha Ha
01 0-8013 1-325 1-584 2-456 07917 1-318 1-579 2:452
04 1-402 1-941 3374 4-649 1-397 1936 3-570 4-646
10 1-506 3008 4-478 5931 1-500 3001 4-475 5928
40 1530 4143 6493 7-383 1-528 4140 6493

7-383




HEAT AND MASS TRANSFER IN A POROUS MEDIUM

Table 2. Values of v, and v,

Ko*Pn, =02 Ko*Pny, = 04

Lu, vy 123 Vi V2
01 09891 3-1971 09786 32314
04 09431 1-6764 0-8993 1-7582
10 0-8011 1-2483 0-7326 1:3650
40 04472 1-1180 0-4108 12171
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RESULTS AND DISCUSSIONS

The effect of dependence of the moisture
diffusivity a,, and thermal diffusivity a, respec-
tively on the mass transfer potential and the
temperature is depicted in Figs. 1 and 2. In these
figures the dotted curves represent the solutions
of the linear problem for values of Lu, and
Ko*Pn,, etc. as stated in these figures and have
been plotted by numerical results from reference
[11]. In Fig. 1 © (0, Fo), the non-dimensional
mass-transfer potential at the symmetry surface
is plotted as a function of non-dimensional time
for four combinations of the variability charac-
teristics namely (6, =0, ¢, =0), (o6, =02,
g, = 0-1;04; 1) and Lu, = 1.1t is clear from the
figure that in general 6, > ¢; makes the mass
transfer faster. This is quite an expected result
as in this case the effective Luikov number
[Luo(1 + 6,8)/(1 + 6,T)] > 1. In this case the
drying time is effectively reduced. In Fig. 2
—T(0, Fo) is plotted against non-dimensional
time for the above four combinations of ¢, and
g, and for Iu, = 0-1 and Lu, = 4-0. It is seen
that T is quite sensitive to the dependence of
a,on T for smaller values of Lu but it is not so for
higher values. Further for Lu, <1 and
g, < 0y, the effect of non-linearity is more
pronounced on T for large Fo while a similar
effect is visible on T for small Fo at Lu, > 1
and ¢, > a,. This can probably be explained by
the fact that for Luy, < 1 mass transfer is slower
than heat transfer and o, < o, only adds to this
tendency with increasing time resulting in
considerable slowing down the rate of change of

© thus blocking the rate of increase of T due to
coupling in the energy balance equation. For
Lu, < 1 and g, > o, this effect has no definite
tendency.

CONCLUSION

A variational principle based on “local poten-
tial” has been constructed for the simultaneous
non-linear heat and mass transfer for a very
general type of dependence of the thermody-
namic characteristics of the medium on the
temperature and mass transfer potential. The
effect of variability of a,, and a, on the tempera-
ture and moisture distributions in an infinite
plate of finite thickness has been studied under
boundary conditions of the first kind. It is seen
that the method reduces to solution of a system
of non-linear equations. The extension of the
method to deal with more complex boundary
conditions and also to the intensive drying
problem (where apart from temperature and
mass transfer, pressure distribution is also taken
into account) would lead to some computational
difficulties but these would be quite negligible in
comparison to the elaborate and complex
numerical procedures for solving a system of
simultaneous non-linear partial differential
equations.
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UNE FORMULATION VARIATIONNELLE GENERALISEE DU TRANSFERT MASSIQUE
ET THERMIQUE NON-LINEAIRE DANS UN MILIEU POREUX

Résumé—Une formulation variationnelle basée sur la méthode de “potentiel local” est présentée pour

le transfert thermique et massique non linéaire durant le séchage d’un corps humide. On obtient une

fonctionnelle & partir de laquelle les équations du bilan décrivant le processus ressemblent & celles d*Euler—

Lagrange dans le sens étendu de Prigogine et Glansdorff. La méthode a 4té appliquée au probléme du

transfert de chaleur et de masse pour une plaque infinie avec des diffusivités thermigues et massiques
sous des conditions limites de premiére espéce.

EIN ERWEITERTES VARIATIONSPRINZIP FUR INSTATIONAREN
WARME- UND STOFFTRANSPORT IM POROSEN MEDIUM

Zusammenfassung—FEin Variationsprinzip, abgeleitet aus der Methode der “'lokalen Potentiale™. wird am
Beispiel des instationdiren Warme- und Stofftransports withrend des Austrocknungsvorgangs in einem
feuchten Korper crldutert. Eine Funktion wird abgeleitet, aus der die Gleichgewichtsbezichungen des
Vorgangs als Evler-Lagrange Gleichungen in der von Prigogine and Glansdorff erweiterten Form folgen.
Das Verfahren wird auf das Problem der Wirme- und Stoffiibertragung in einer ynendlich auisgedehnten
Platte, mit Randbedingungen 1. Art ftir die Temperatur und die Konzentration, angewandt.

OBOBIMEHHBI BAPMAI{MOHHDBI NPWHIINT VST HEAUMHENTHOTO
THEILIOW MACCOOBMEHA B HOPHCTOR CPEAR

Axporanns—DB pafore TNpPeNCTARICH BAPHULMOHIBIE HPUHIMI, CHOPMYIUPOBAHKBIE Ha
OCHOBAHMH «JIOKAIBLHOIO NOTEHIMANA », IpUMeHAeMBIH [\JI9 POUIeHUA HesmHelinol 3a5aun- u
vaceoofiMena B IIpollecce CYLIKM BIANKKHOro nopucroro tena, llonyuew ¢yarmnonan, us
ROTOpOTO CiaedyeT ypaBHeHus Osslanca B BUZe ypasHeHnil dimepa- Jlarpauska, 000ileHHBX
TMpuroskuusin 1 Taancgopdoy, Mero) npumenseTca K pelliennio 3aja4y O Teno- U Macco-
obwene pa GecKOHEUNON TIFACTHIE 1TPH TeMIEPATYPE U BAXKHOOTH, 3ABHCMMBIX OT TeMIepa-
TYPONPOBOTHOCTH M MACCONPOBOJHOCTH, HPH TPANBYHBIX YCIOBHAX NCPBOTO poia.



